Recitation 6. April 13

Focus: computing determinants, Cramer's rule, diagonalization, eigenvalues and eigenvectors
There are three main ways of computing the determinant of an $n \times n$ matrix A :

- row echelon form : row reduce the matrix A, and then:

$$
\operatorname{det} A= \pm \text { product of pivots }
$$

where the sign is + if you did an even number of row exchanges, and - if you did an odd number of row exchanges.

- the big formula:

$$
\operatorname{det} A=\sum_{\{\sigma(1), \ldots, \sigma(n)\}}^{\text {permutations }}(-1)^{\operatorname{sgn} \sigma} a_{1 \sigma(1)} \ldots a_{n \sigma(n)}
$$

- cofactor expansion:

$$
\begin{array}{ll}
\text { along the } i \text {-th row: } & \operatorname{det} A=a_{i 1} C_{i 1}+\cdots+a_{i n} C_{i n} \\
\text { along the } i \text {-th column: } & \operatorname{det} A=a_{1 i} C_{1 i}+\cdots+a_{n i} C_{n i}
\end{array}
$$

where $C_{i j}=(-1)^{i+j}$ times the determinant of the matrix obtained by removing row i and column j from A.

The formulas above also give rise to cofactor formulas for inverse matrices:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{ccc}
C_{11} & \ldots & C_{n 1} \\
\vdots & \ddots & \vdots \\
C_{1 n} & \ldots & C_{n n}
\end{array}\right]
$$

The only formula for determinants that you may give without justification is the 2×2 case:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Cramer's rule gives a quick formula for the solutions of a system $A \boldsymbol{v}=\boldsymbol{b}$ for an $n \times n$ matrix A :

$$
\boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \quad \text { where } \quad v_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A}
$$

and B_{i} is obtained from A by replacing its $i-$ th column with the vector \boldsymbol{b}.
To diagonalize a square matrix A means to write it as:

$$
A=V\left[\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right] V^{-1}
$$

Explicitly, the numbers $\lambda_{1}, \ldots, \lambda_{n}$ are called eigenvalues and the columns of V are called eigenvectors

$$
V=\left[\boldsymbol{v}_{1}|\ldots| \boldsymbol{v}_{n}\right]
$$

The way you compute these is the following. Eigenvalues are the roots of the characteristic polynomial:

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Once you know the eigenvalues, the eigenvectors are computed as bases for nullspaces:

$$
A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i} \quad \Leftrightarrow \quad \boldsymbol{v}_{i} \in N\left(A-\lambda_{i} I\right)
$$

1. Compute the determinant of:

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 0 & -2 & 1 \\
1 & 0 & -1 & 4
\end{array}\right]
$$

by doing a cofactor expansion along its second row.

Solution:

2. Use the cofactor formula to invert the following matrix:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

Solution:
3. Use Cramer's rule to solve the following system of equations:

$$
\left\{\begin{array}{l}
x+3 y-z=0 \\
x+y+4 z=0 \\
x+z=1
\end{array}\right.
$$

Solution:

4. Find the eigenvalues and eigenvectors of the following matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $\phi(v)=A v$. Can you find a basis $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ of \mathbb{R}^{3} with respect to which ϕ is given by a diagonal matrix?

Solution:

